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ON LONG ITUD INAL VIBRATIONS OF THE EDGES OF A PLANE CRACK 
IN AN ELASTIC LAYER * 

B.I. SMETANIN and B.V. SOBOL' 

The problem of steady longitudinal vibrations of the edges ofaplane 
crack in an elastic layer is considered. The problem is reduced to the 
solution of an integral equation of the first kind by integral transform 
methods. The solution of this problem is constructed by using the 
asymptotic method of "large h" /l/, as well as the Ritz method. The 
asymptotic method enabled a solution of the problem to be obtained in a 
form convenient for practical application. Computational formulas are 
presented for the intensity coefficient of the tangential stresses that 
originateoutside the crack on its continuation, as well as for the func- 
tions characterizing the longitudinal displacements of the crack edges. 

1. Formulation of the problem. In the middle plane of an elastic layer of thick- 
ness Zh, let there be a plane crack occupying the domain y = &to, 15 1 <a,IzI < 00. The layer 
faces are load-free. A load z,,=+zcos ol is applied to the crack edges (t is the time, and 
the plus and minus 
can be reduced /2/ 
transform: 

Here G is the 
cp (E) is related to 
by the formula 

The kernel of 

signs correspond>0 the upper and lower edges of the crack). This problem 
to the solution of the following integral equation by a generalized Fourier 

x = uhf@, h = hla, E = xla, 15 1 < 1 

shear mulus, and p is the density of the elastic medium. The function 
the projection W of the displacement vector on the & axis y = ~0, lzl<a 

W = *Re {cp (x/a) exp (id)} (1.2) 

the integral equation (1.1) should be understood in the sense of general- - 
ized functions. The contour r in the kernel coincides with the real axis everywhere outside 
the neighbourhood of real poles of the function thJU*-x2, and bypasses the positive real 

poles from above, and the negative poles frcm below /2/. 
The poles of the function thvu* -xx2 are determined from the equation chl/"?-xx'= 0 

and have the form 

u = *4, u, = V/x" - al2 (n - 'it)' (n = 1, 2, . . .) 

i.e., for .x<n/2 lie on the imaginary axis symmetrically about the real axis. For n/2 < 
x< cc a finite number of poles of the function thl/uY - x'will be on the real axis. 

We superpose the contour r in (1.1) on the real axis. We consequently obtain 

(1.3) 

The terms outside the integral in the kernel of (1.3) are due to the presence of poles 
on the real axis for the function thl/ u2 - x2, and N is the number of positive real poles 
of this function (cases of double poles at the origin are not examined). Taking account of 
the value of the integral /3/ 
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P- u---c =o (Imc=O) 
-b) 

we convert (1.3) to a foxm convenient for the utilization of semi-analyticalmethods of solviirg 
this equation which are realized using a computer 

2. The method of "large b". it is more convenient to consider 

(1.4) 

for the realization crf the method in /L/ to solve (1.4). 
The integral equation (2.1) with the kernel (2.2) is equivalent to (1.4) when the follow- 

ing conditions are satisfied: 

cp (rtl) = 0, cp' (8 =* (51 (2.3) 

We note that the singularities of the integrand in 12.2) can be eliminated. 
In conformity with the limit absorption principle /2/, the function &(L) can be repre- 

sented in the following form (H,@W is the Hankel function /4/, and C is the Euler constant): 

m=o 

3 
I- f)“[Zm- i)ft%?"+e 

78 = (2m+If!(2RL+2)!! 
*it 

Urn== B,jC-l*+ (2m+2)-1 -z+, m=0,1,2 ,.., 
%Wf-1 

k-1 

The function q2(1) can he expanded in the series 

Qa (f) =$(c_ 4 icE,)l*m+' 

where ~,and d, are representable on the basis of the last equation in 12.2) in the form 

c,=--c+,+~~ (rn=o,l,...) 
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Taking account of the results obtained, we write the series expansion of g(1) in the form 

(e,, jr?%> & are real coefficients) 

m 

q (1) = + +G (d,+B,lnIll)P”+l, d,=u*+f,+id, 
m=o 

(2.4) 

Inserting 12.4) into (2.1) , we obtain the following integral equation of the second kind 
by regularization 

we seek the solution of 12-S) in the form 

(2.61 

Inserting t)(E) in the form of (2.6) into the left and right sides of (2.5) and then 
equating expressions for identical powers of h7" In" h we obtain equations determining q_(g) 

After having determined the functions q,,,,,(E) we obtain 

Taking account of (2.3) the following function can be found from (2.8) 

+ ~ro+(~~+%E’)F,+(-f;lt~E~+~&~)F*j x ~+o(k%%)) 
Therefore, the function W characterizing the displacement of points of the crack edges 

can be represented on the basis of (1.2) and (2.9) in the form 
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The intensity coefficient of the tangential stresses KIII tnat xcur Jutside r:le ZL'IL‘ 
on its continuation can be determined from the formulas 

From (2.10) and (2.11) we obtain 

(2.13) 

We note that the solution of the corresponding problem of a crack in space can be obtained 
from (2.10) and (2.12). To this end, terms corresponding to q2(1) must be neglected in the 
solution obtained, while the parameter h must be replaced by FX in the remaining terms, where 

E = (ao)-‘U’GT. For instance, eye obtain from (2.12) 

Krrr = t I/Z(611coswt$ 8,sinwt) $13) 

Qr= 1+(0.3273+-+ h+ +(-0,0554 - O,i5631n E + 

~ln”e)E-‘fO(e’ln9e) 

i;zz= 0,3927e-" + (0,2447+ 0,1963 lne)b4 + O(E-~ I$&,) 

Formulas (2.13) can be used for 2 < E< co. The results of computations using these 
formulas agree with the results presented in /5/. 

3. The Ritz method. When using the Ritz method /6/, the integral equation of the 
problem under consideration should be taken in the form (1.4). Taking into account the even- 

ness of the function m(E), we convert this equation to the form 

We seek the solution of (3.1) in the form 

(3.1) 

where U,,,,(g) are Chebyshev polynomials of the second kind, and X, are coe'fficientsto be deter- 
mined. Denoting the integral operator acting in (3.1) on the function 'p in terms of L, we 
write this equation in the form 

Lq? = f (3.3) 

We consider the functional 

Inserting cp(E) in the form (3.2) into (3.4) and using the condition for the minimum of 
the functional F((P), i.e. , dFji?X, = 0 (n = 0, 1, . ., M), we obtain the following system of 
linear algebraic equations in xln (&iw% is the Kronecker delta): 

gx&=+*~@ (n=0,1,..., MT) (3.5) 
rn=G 
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Formulas (7.324,2), (6.574,2) in /4/ are used to obtain expressions (3.6) determining R,. 
The coefficients R, should be evaluated taking the symmetry R, = R,, into account. 

A system of functions cp,(g)= v-u,,,,(E), that are elements of a real Hilbert space, 
it selected as the system of coordinate functions for realization of the Ritz method of solv- 
ing the integral equation (3.1). The coefficients X,in the linear combination of these 
functions (3.2) are real for h <w and x<x/2 and complex for x> n/2. This deduction 
follows from the representation (3.6) for the coefficients R,. It therefore follows that 
there is no phase shift in the vibrations of the load ryr applied to the crack edges and in 
the vibrations of the points of the crack edges for h<‘m and x<nj2. In the remaining 
cases, including the case of a crack in space, a phase shift will occur in the vibrations 
mentioned. 

We also note that (3.5) and (3.6) can be obtained by the method of orthogonal polynomials. 
It is here necessary to use the series expansion of cos(Az) in Chebyshev polynomials of the 
second kind U,(z) 

cos(Az) = +E (- i)"(2n + 1) J2,+l W’u,, (4 (3.7) 
n=o 

The validity of (3.7) can easily be established by using (7.324,2) in /4/ and the ortho- 
gonality condition for the polynomials G* (2) /4/. Expanding the solution of (3.1) in the 
form 

(3.8) 

and applying the procedure of the method of orthogonal polynomials by using (3.7), we obtain 
the following infinite linear algebraic system to determine the coefficients X, of expansion 
(3.8): 

OD 

z 
':X,,,R,=-h 

2M 
(n EO, 1, 2, . .) 43.9) 

m-O 

where the R,,,, are given by (3.6). Applying the method of reduction to (3.9), we arrive at 
the final system (3.5). 

4. Comparison of the results. We obtain as a result of investigating the problem 
by the Ritz method taking the value ~,,,,(~)/(&II + 1) = 1 into account: 

KIII = T e $ (- I)” Re (X,,,eimf) 
m-0 

(4.1) 

We represent the result of solving the problem by the method of large 1 in the form 

KII1 = zl/ZRe [(Nl + ilv,) eiof] (4.2) 

The amplitude values of the tangential stress intensity coefficient are respectively 
calculated for each of the solutions obtained, from the formulas 

maxt KIII = t I/Z (15 (- 1)” Re:X,]* + rS(- 1)” Im X,1'>"* (4.3) 
n&PO 

(4.4) 

Fig.1 

As an illustration we show in the figure the results ofcalcula- 
ting the parameter N, = maxt KI~I/(T~~) by (4.3) (the solid line) 

and (4.4) (the dashed line) by each of the methods considered for 
111 = 1. 

The accuracy of the investigation of the problem by the Ritz 
method is established by comparing the results for a different 
number of coordinate functions. In particular, for 0.5 <h<oo 
the results of the calculations for M=4 and M=8 differ by 
not more than 1%. Therefore, in the case under consideration, the 
solution of the problem by the method of large h yields quite 
exact results for h> 3. 

The authors are grateful to V.M. Aleksandrov for his interest. 
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ON THE LAGRANGE PROBLEM OF THE MEAN MOTION OF PERIHELIA* 

A.A. BUROV 

It is shown that themean motion of perihelia in the Lagrange sense in a 
non-resonance @et is uniformly continuous in the initia3. phases of the 
frequency function. 

The dynamics of a planetary system such as the solar system is examined. To a first 
approximation of perturbation theory, when the squares of the orbit. eccentricities can be 
neglected compared with the eccentricities themselves, the evolution of Lie LapLace vector is 
described by the function 

A(t) = 5 =me=pf2ni(X,t+%m)l 
?n* 

where the constants am,&,,,'pom are determined in terms of the planet mass and the initial 
conditions. The mean motion of the perihelion is defined as 

Lagrange showed that ~=2& if Q&Iz~+~,+.. +-l-a,+ In the non-trivial case when this 
condition is not satisfied, the mean motian is calzulated for n= 2 [1] and for arbitrary R 

/2/ for the non-resonance set of frequencies X=(hO,...,&,):< k,1>+0. Vk=Z"+l, k+O and has 
the form 

F&h) ='2n i; z&W=(a) 
-0 

The existence of mean motion for an arbitraq'set of frequencies L is proved Ln /3/. 
Let: R, 5 be certain continuous fun&ions of the parameter WEIR*. 

Assertion* Tf for cc==, the vector L(apj is non-resonant, then uniformly in qo= TR"l 
+P mod il 

1irn Wta(a),~tW, rpo) -P(a(aoLL(W 
(1-a. 

Remarks. lo. For fixed CC the function p(a,L,rp,) is generally discontinuous in po, when 

x(a) is a resonance vector. 
20. of the function A(f) vanishes for certain values of the time, its argument is not 

defined. In such a case it is customary to distinguish the "first" and "left" arguments of 
the function A(t). when passing through a zero of multiplicity p the right argument of the 
function A (t) receives an increment np ds t-m, while the left receives the increment f--np) 

/4/. The right and left mean motions p+and p- /3/ that are in agreement for non-resonance 
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